<u>Deep Phreatic Thermal Explorer:</u>

Robotic Exploration and Biologic Sampling in 3D Unexplored Environments

AMES RESEARCH CENTER

Carnegie Mellon

Path to mission Overview

- Zacatón (DEPTHX)
- Lake Vostok
- Europa

DEPTHX's ASTEP Goals

- Astrobiology Science Goal: Develop an advanced methodology and protocol for the discrimination of life in a sub-aqueous environment.
- Planetary Exploration Goal: Develop the DEep Phreatic THermal eXplorer (DEPTHX) vehicle, an autonomous maneuvering platform that acts upon the information sensed and processed by the hierarchical decision-to-collect microbiological subsystem and "drives" the sensor suite to areas of potential interest.

Relevance to ASTEP

DEPTHX directly addresses the ASTEP Program's need for technology maturation, science data collection, and operations analysis in the areas of:

- Self-contained mobile science systems and platforms
- Instrument suites for in situ identification and analysis of biomarkers
- Integration of science instrument suites with mobile platforms
- Autonomous instrument deployment and placement
- Autonomous recognition of unexpected science phenomena
- Characterization of life-supporting environments

DEPTHX Overview

- Fully Autonomous (AUV)
- Bio-sampling Subsystem
- DEPTHX Vehicle Heritage
- 3D Real-time Subterranean Imaging
- SLAM navigation
- Mission Executive

Microbiology Decision-to-Sample Hierarchy

STAGE	GOAL	APPROACH	SENSORS	HARDWARE /ALGORITHMS
World Exploration	Map the extent of uncharacter ized world	Build up 3D spatial map of world boundary	Sonar mapper, pressure (depth), inertial guidance, RLG, Doppler sonar	3-D SLAM, Physical Platform, maneuvering thrusters
World Characterization	Measure significant parameters that are indicators of likely places for concentrate d search	Volume- controlled raster sweep spatial mapping of chemical and environmental parameters and construction of onboard lookup tables.	Coarse-scale microprobe suite including, but not limited to: sulphur (sulphate/ sulphide); pH; temperature, organic carbon, dissolved oxygen, flow, dissolved hydrogen.	data analysis

Microbiology Decision-to-Sample Hierarchy

STAGE	GOAL	APPROACH	SENSOR S	HARDWARE /ALGORITHMS
High Level Region Discrimination	Identify likely regions of interest	Data mine chemical and environmental data in the context of the 3D world model.	none	Onboard parallel processing to prioritize 3D volume zones for further analysis and data collection
Localized Site Characteri- zation	Refine knowledg e of "interest ing" region candidat es	Use high resolution instruments to further prioritize localized likely site. Intelligent, adaptive analyses of the environment, e.g. move platform along gradients.	High res cameras and multi- spectral lighting (RGB, UV), ultrasound, fine-scale microprobe suite, wall and/or floor compliance.	Implement fuzzy rules of what's "interesting" (adaptive as we learn more about what is "interesting" for the local region), image processing, robot arm. Binary go/no-go decision for further investigation.

Microbiology Decision-to-Sample Hierarchy

STAGE	GOAL	APPROACH	SENSORS	HARDWARE /ALGORITHMS
In-situ Analysis	Detect life forms in candidate samples	Position and maintain platform on site. Acquire candidate sample. Test for presence of cells using imaging, fluorescent probes, and wet chemistry.	High resolution imaging (200×) with multispectral light; ATP sensor with lucifirin/luciferase assay; molecular probes for flagella, lipids, storage compounds (PHB), and exo-polysacharides; flow-through imaging (fluorescence segmentation).	Fine-scale robot arm; sampling probe, flow pump; machine vision hardware and software; sample- collect decision algorithm
Collection	Collect and Return samples asepticall	Capture from the fluid column, the wall surface, underlying matrix (rock), and/or floor sediment.	Contact sensors; force sensors; flow sensors; "full" sensors.	Robot arm; coring tool; 1 ml × 10 sample carosel; 15 ml × 10 sample carosel.

<u>Deep Phreatic Thermal Explorer:</u>

Robotic Exploration, Mapping, and Life Search at the World's Deepest Cenote

Zacatón

Max depth reached = 925 feet (280m)

Extent: unknown

Limits: Beyond Human Reach

Hypothesized
Profile based
on limited
spatial data
(wire drop
sounding)

Complex microbial communities have yet to be investigated

Apparent colloidal sulfur on biofilm

Cenote Caracol @ 10 meter depth

Cenote La Pilita @ 15 meter depth

PURPLE BIOFILM COATS WALLS OF DEEPEST SINKHOLES IN PHOTIC ZONES – H₂O is anoxic and sulfurous.

Photos by Robin Gary, 2002

Evidence of microbial-mineral interaction imaged from calcite beneath biofilm

Biofilm covering subaqueous spar calcite in the cenote Caracol at a depth of 18 meters.

Building DEPTHX: heritage-proven technology

ENVIRONMENTAL
SENSOR SUITE
(TOP BAY)
[INCLUDES TEMPERATURE,
DEPTH, POWER ON/OFF,
AND DATA PORT]

32-POINT HELICAL
SONAR ARRAY
[INCLUDES 5 DSP PROCESSORS
AND DIGITAL I/O PORT; MAX
UPDATE RATE 12 HZ, ENTIRE BANK,
REAL-TIME RANGE GATING &
MULTI-PATH REJECTION]

MAIN SENSOR
INTEGRATION COMPUTER
STACK [INCLUDES PC
SERIAL INTERFACE]

PITCH / ROLL
DIVE PLANES
(SERVO-CONTROLLED)

POWER SUPPLY AND PROPULSION BULKHEAD

> INERTIAL MEASUREMENT UNIT (IMU). INCLUDES HIGH GRADE RING LASER GYRO, POSITION, VELOCITY, ROLL, AND RATES, DIGITAL I/O AT 66 HZ UPDATE]

LOWER ENVIRONMENTAL SENSING BAY (CURRENTLY UN-USED) WALL DEFLECTORS

32-point Sonar Array

Sonar Bank 1

Sonar Bank 1

Sonar Bank 1 [cpu 5]

Sonar Bank 1

NATIONAL GEOGRAPHIC SOCIETY

Mobility Platform: Phoenix LV

Map Building & Navigation: SLAM IMU/RLG DOPPLER SONAR Depth

Instantaneous Image **Fast SLAM:** on Return (contains **Return Home** noise, multi-path & no-returns) no-return zone depth i Stored match? Мар ф a) depth i Stored Мар match? b) Stored depth i Map ф match? c)

Return Home: SLAM IMU/RLG DOPPLER SONAR Depth VS Stored 3D Map

DEPTHX

System Executive

Research Plan: Year 1

- Define sensor arrays, maneuvering system, mission planning algorithms, "return home" algorithms, onthe-fly segment co-registration algorithms
- Begin development of a completely integrated simulation package that will allow the performance of the fully-autonomous DEPTHX vehicle to be ascertained within the framework of existing 3D cavern datasets (mainly those from Wakulla Springs).
- Astrobiology team will define the basis for autonomous lifeform detection and the sensor suite and real-time software that will be required to implement it.

Research Plan: Year 2

- Continue SLAM & System Executive Development
- Manufacturing, Integration, and lab-testing of DEPTHX vehicle
- Field testing of SLAM and mission execution in controlled settings (collaboration with UT Applied Research Lab – Lake Travis, or Wakulla Springs)
- Lab-testing of Life Detection and Sample Subsystem

Research Plan: Year 3

- Zacaton field campaign (3-4 months on site)
- Field Campaign Goals
 - § Autonomous mapping of unknown territory to -500m at 1,000m+ from entrance
 - § Ability to discriminate among biological control samples (collected prior to mission by divers)
 - § Autonomous Collection of novel lifeforms